
MINISTRY OF EDUCATION AND TRAINING

THANG LONG UNIVERSITY

Nguyen Van Hong

SOME METHODS FOR SOLVING EQUILIBRIUM

PROBLEMS OVER FIXED POINT SETS

Major: Applied Mathematics

Code: 9 46 01 12

SUMMARY OF DOCTORAL THESIS

Hanoi – 2024



This thesis has been completed at Thang Long University, based

on the research results of the author and colleagues.

Supervisor 1: Assoc.Prof. Dr. Pham Ngoc Anh

Supervisor 2: Prof.Dr. Le Dung Muu

Reviewer 1:

Reviewer 2:

Reviewer 3:

The thesis will be defended at the Board of Examiners of Thang

Long University at . . . on . . . , . . . of . . . , . . . .

The thesis can be explored at:

� National Library of Vietnam;

� Library of Thang Long University.



contents

Cover i

Introduction 1

1 Chapter 1. Some basic knowledge about equilibrium

problems and fixed point problems 3

1.1 Hilbert space . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Equilibrium problem . . . . . . . . . . . . . . . . . . 4

1.2.1 The problem and some related problems . . . 4

1.2.2 The existence of solutions . . . . . . . . . . . 4

1.3 The equilibrium problem over the fixed point set . . . 4

1.3.1 The problem . . . . . . . . . . . . . . . . . . . 4

1.3.2 Some common algorithms . . . . . . . . . . . 4

2 Chapter 2. Extended projection methods 6

2.1 Approximately parallel projection method . . . . . . 7

2.2 Parallel subgradient method . . . . . . . . . . . . . . 9

2.3 Numerical illustration . . . . . . . . . . . . . . . . . . 10

2.4 Extragradient subgradient parallel projection algorithm 11

2.4.1 Algorithm and the convergence . . . . . . . . 11

2.4.2 Numerical illustration . . . . . . . . . . . . . 15

3 Chapter 3. Inertial subgradient methods 16

3.1 Inertial subgradient methods . . . . . . . . . . . . . . 16

3.1.1 Algorithm and the convergences . . . . . . . . 16

3.1.2 Numerical illustration . . . . . . . . . . . . . 18



3.2 Parallel inertial auxiliary principle technique . . . . . 18

3.2.1 Algorithm and the convergence . . . . . . . . 18

3.2.2 Numerical illustration . . . . . . . . . . . . . 20

The list of works of author related to the Thesis 23



Introduction

Overview of research situation

After more than half a century of formation and development, the

theory of equilibrium problems over fixed point sets has gradually

con- firmed its role as well as the development in optimization theory,

applied mathematics and realistic mathematical models.

Nikaido H. and Isoda K. first introduced the equilibrium problem

in 1955. After that, Ky Fan (1972) reviewed this model that is the

form of a minimax inequality. Then, existence of solution of the

problem is shown under the convex and compact condition of the

set C and the function f is quasi-convex on C . This result is also

extended by Brezis H. and colleagues in 1987. In 1992, Muu L.D.

and Oettli W. introduced first the equilibrium problem and a new

algorithm to solve it, where the bifunction f is monotone. After

the research of Blum E. and Oettli W., in 1994 was published, the

equilibrium problem has attracted the attention of many researchers.

Although the equilibrium problem has a fairly simple form but it

con- tains many important classes of problems in many other fields

such as optimization problem, saddle point problem, inequality vari-

ational in- equality problem, fixed point problem, Nash equilibrium

problem. From the results of the individual problems mentioned

above, with appropriate adjustments, we can extend it to the gen-

eral equilibrium problem.

Besides the researches related to equilibrium problems, another

class of problems that is also mentioned in this thesis is the fixed
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point problem. The fixed point theory has been around for about

many centuries and has developed strongly in recent decades. Ba-

nach contraction mapping principle (1922) has formed two main

directions of fixed point theory: The existence of fixed points of

continuous mapping and the existence of fixed points of contraction

mapping. The Brouwer fixed point principle (1912) and the Banach

contraction mapping principle are the initial results for the fixed

point theory. In the 60s of the 20th century, the contractile fixed

point principle was strongly developed. This theory allows us to

build the algorithms to solve the problem.

In recent years, many researchers have been interested in the

problem of finding solutions of an equilibrium problem on a set of

solutions of other equilibrium problems or finding solutions of an

equilibrium prob- lem on a set of common fixed points of mappings.

This class of problems is called bi-level equilibrium problems. Along

with qualitative research directions, research on methods of solving

this problem and applying this problem into practical models plays

a very important role.

Realizing the importance and necessity of researching effective al-

gorithms on computers with applications in practical models, the

author of this thesis aims to propose new algorithms and applying

calculations on Matlab software with specific data.

Beside the introduction, the conclusion, list of published works,

and the reference section, the thesis consists of 3 chapters. The main

results of the thesis are presented in Chapter 2 and 3.

The main results of the thesis are written based on 04 articles,

in which 03 articles were published in journals with ranking SCIE

and 01 article was accepted for publication in a journal with ranking

SCIE.
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Chapter 1

Some basic knowledge about

equilibrium problems and fixed

point problems

In this chapter, we will present some basic concepts as well as

necessary supporting results used in the following chapters.

The chapter content is presented in three main parts. The first

part recalls the necessary concepts of Functional Analysis and Con-

vex Analysis related to the thesis. The second part introduces the

equilibrium problem and its separate cases together the conditions

for the existence of solutions to the equilibrium problem. Finally, we

present the fixed point problem and some basic iterative methods

used to solve this problem.

The chapter content is written based on the documents Cegielski,

A. (2013), Konnov, I.V. (2001), Muu, L.D. (2016), Facchinei, F.

(2003), Fan, K. (1972), Giannessi, F. (2004).
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1.1 Hilbert space

1.2 Equilibrium problem

1.2.1 The problem and some related problems

1.2.2 The existence of solutions

1.3 The equilibrium problem over the fixed point set

1.3.1 The problem

1.3.2 Some common algorithms
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Chapter 2

Extended projection methods

In this chapter, we present two projection methods to solve the

equilibrium problem on a set of fixed points in real Hilbert space H
with the assumption that the bifunction f is strongly monotonone

and has an approximate sub-differential set is Hausdorff Lipschitz

continuous on the set C.

The first algorithm is a combination of the approximate sub-

gradient technique of Santos P. (2011) and the hybrid reduction

direction scheme of Yamada I. (2013). In the second algorithm, we

combine the fixed point iteration technique of Mann W.R. (2003)

and the parallel sub-gradient method to solve the (2.1) problem

when C = H.

Motivated by the extragradient method for equilibrium and fixed

point problems in (Anh, P.N., 2013), parallel techniques in Anh

P.N. (2020) and Strodiot J.J., Hai T.N. (2022, 2012), we propose a

new iter-ative algorithm to solve Problem (2.7), replacing the metric

projection as usual by inexact projection. Illustrative calculations

of the algorithm and comparison results with other algorithms are

also presented in detail in sections 2.3 and 2.4.3. The content of this

chapter is written based on two articles [CT1., CT4.] in the The list

of works of author related to the Thesis.

Let Si : C → C (i ∈ I := {1, 2, · · · , p}) being βi−semicontractive
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mapping, we have an equilibrium problem over the fixed point set:

Find x∗ ∈ Ω such that f(x∗, y) ≥ 0, ∀y ∈ Ω, (2.1)

where Ω = ∩i∈IFix(Si), and Fix(Si) := {x ∈ C : Si(x) = x}.

2.1 Approximately parallel projection method

Algorithm 2.1. Initialization: Take x0 ∈ C arbitrarily.

Iterative steps: k = 1, 2, · · ·
Step 1. Choose the parameters satisfy the following restrictions:

τ ∈ (0, β), 0 < τk ≤ γk < min
{

2β
L2 ,

2(β−τ)
L2−τ2 ,

1
τ

}
,

0 < a ≤ αk,i < min
{

1−βi
2 : i ∈ I

}
,

ϵk ≤ γk,
∑∞

k=0 ϵ
2
k < +∞,∑∞

k=0 γk = +∞,
∑∞

k=0 γ
2
k < +∞,

∑∞
k=0 γkτk < +∞.

(2.2)

Step 2. Compute
yki = (1− αk,i)x

k + αk,iSi(x
k), ∀i ∈ I,

yk := yki0, with i0 ∈ argmax{∥yki − xk∥ : i ∈ I},

xk+1 ∈ PrϵkC (y
k − γku

k), uk ∈ ∂τk
2 f(yk, yk).

(2.3)

Step 3. Set k := k + 1 and return to Step 1.

To prove the convergence of the iterative sequence determined by

the algorithm 2.1, we first prove the lemma 2.1.

Lemma 2.1. Let C be a nonempty closed convex subset of a real

Hilbert space H. Let g : C × C → R be a bifunction such that

g(x, x) = 0 for all x ∈ C, and for each x ∈ C, g(x, y) is lower semi-

continuous, convex and subdifferentiable on C respect to y. For each

ϵ ≥ 0, if g is β-strongly monotone on C and ∂ϵ
2g(x, x) is compact,

Lipschitz continuous with constant L > 0 on C such that β ≤ L,

then the multivalued mapping

S(x) := {x− γwx : wx ∈ ∂ϵ
2g(x, x)} , ∀x ∈ C,
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is 2
√
γϵ−contractive with constant δ =

√
1− γ(2β − γL2), where

γ ∈
(
0, 2βL2

)
.

In addition, we also use some basic lemmas which are restated

below.

Lemma 2.2. Let {ak} and {δk} be sequences of nonnegative real

numbers such that

ak+1 ≤ ak + δk, ∀k ≥ 0,

where {δk} satisfies
∞∑
k=0

δk < ∞. Then, there exists finite the limit

lim
k→∞

ak.

Lemma 2.3. Let {ak} be a sequence of nonnegative real numbers.

Suppose that for any integer m, there exists an integer p such that

p ≥ m and ap ≤ ap+1. Let k0 be an integer such that ak0 ≤ ak0+1

and define, for all integer k ≥ k0,

τ(k) = max{i ∈ N : k0 ≤ i ≤ k, ai ≤ ai+1}.

Then, 0 ≤ ak ≤ aτ(k)+1 for all k ≥ k0. Furthermore, the sequence

{τ(k)}k≥k0 is nondecreasing and tends to +∞ as k → ∞.

Lemma 2.4. Assume that S : H → H be a m−demicontractive map-

ping such that Fix(S) ̸= ∅ and α ∈ [0, 1 −m]. Then, the mapping

Sα = (1− α)I + αS is quasinonexpansive on H. Moreover,

∥Sα(x)−x∗∥2 ≤ ∥x−x∗∥2−α(1−m−α)∥S(x)−x∥2, ∀x ∈ C, x∗ ∈ Fix(S).

Lemma 2.5. Let {ak} ⊂ R+ be a sequence satisfying the inequality

ak+1 ≤ (1− αk)ak + αkδk

where {αk} ⊂ [0, 1] and {δk} ⊂ R. If
∑∞

k=0 αk = +∞ and lim supk→∞ δk ≤
0, then limk→∞ ak = 0.

Using lemma 2.1 and the lemmas repeated above, We prove the

convergence of the parallel projection method through the theorem

2.1.
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Theorem 2.1. Let f : C × C → R ∪ {+∞} be β−strongly mono-

tone and weakly continuous for each ϵ ≥ 0 and x ∈ C, ∂ϵ
2f(x, x)

be compact, Lipschitz continuous with constant L > 0 on C such

that β ≤ L. For each i ∈ I, let the mapping Si : C → C be

βi−demicontractive such that Ω ̸= ∅. Then, the sequences {xk} and

{yk} converge strongly to a unique solution x∗ of the problem (2.1).

2.2 Parallel subgradient method

In this section, we introduce the parallel subgradient projection

method to solve the equilibrium problem over a fixed points set and

prove the convergence of the algorithm with the assumption that

the bifunction f is β− strong monotone, weakly continuous for each

ϵ ≥ 0, x ∈ H. To prove the convergence of the iterative sequence

{xk}, {yk} we need to calculate the distance projection onto the set

C at each iteration step.

Algorithm 2.2. Initialization: Take x0 ∈ H.

Iterative steps: k = 1, 2, · · ·

τ ∈ (0, β), 0 < τk ≤ γk < min
{

2β
L2 ,

2(β−τ)
L2−τ2 ,

1
τ

}
,

0 < a ≤ αk,i < min
{

1−βi
2 : i ∈ I

}
, ϵk ≤ γk,

∑∞
k=0 ϵ

2
k < +∞,∑∞

k=0 γk = +∞,
∑∞

k=0 γ
2
k < +∞,

∑∞
k=0 γkτk < +∞, µ ∈

(
0, 2βL2

)
,

βk ∈
(
0, 1− γk(1−

√
1− 2µβ + µ2L2)

)
.

(2.4)

Step 2. Compute
yki = (1− αk,i)x

k + αk,iSi(x
k), ∀i ∈ I,

yk := yki0, with i0 ∈ argmax{∥yki − xk∥ : i ∈ I},

xk+1 = βkx
k + (1− βk)y

k − µγku
k, uk ∈ ∂τk

2 f(yk, yk).

(2.5)

Step 3. Take k := k + 1 and return to Step 1.
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Theorem 2.2. Let the bifunction f : H × H → R ∪ {+∞} be

β−strongly monotone and weakly continuous, ∂ϵ
2f(x, x) be compact,

Lipschitz continuous with constant L for each ϵ > 0 such that β ≤ L.

For each i ∈ I, the mappings Si : H → H be βi−demicontractive

such that Ω ̸= ∅. Then, under the restriction set (2.4) onto param-

eters, the sequences {xk} and {yk} converge strongly to a unique

solution x∗ of the problem (2.1).

2.3 Numerical illustration

In this section, we will perform some calculations illustrating the

strong convergence of iterative sequences generated from the algo-

rithms. We also compare the proposed algorithm with the subgradi-

ent type method ((STM)) of Iiduka and Yamada (2009) (Algorithm

3.2), the extragradient subgradient method of Anh, P.N., Kim, J.K.,

Muu, L.D. (2012).
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2.4 Extragradient subgradient parallel projection algorithm

Let C be a nonempty closed convex subset of H. Let f : C×C →
R ∪ {+∞}, gj : C × C → R ∪ {+∞} be bifunctions such that

f(x, x) = 0, gj(x, x) = 0 for all x ∈ C, j ∈ J , I = {1, · · · , r}, J =

{1, · · · ,m}. The equilibrium problem for f onto C: Find x̄ ∈ C

such that

f(x̄, y) ≥ 0, ∀y ∈ C. (2.6)

The solution set of the problem is denoted by S(C, f). Let mappings

Si : C → C(i ∈ I) be demicontractive. In this paper, we consider

the following bilevel equilibrium problem including demicontractive

mappings:

Find x∗ ∈ Ω such that f(x∗, y) ≥ 0, ∀y ∈ Ω, (2.7)

where Fix(Si) is the fixed point set of Si, and Ω = ∩i∈IFix(Si) ∩
S(C, gj), j ∈ J .

The convergence of the sequences generated by the algorithms

is proven in Theorem 2.3. Calculation results in infinite as well as

finite dimensional space are given to illustrate the calculation of the

convergence of the sequences generated by the algorithm.

2.4.1 Algorithm and the convergence

In this section, we will present the calculation steps of the algo-

rithm with approximation subgradient technique and approximation

of distance projection.

Algorithm 2.3. Initialization: Choose any x0 ∈ C.
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Step 1. Choose the parameters

τ ∈ (0, β), τk ≤ γk < min
{

2β
L2 ,

2(β−τ)
L2−τ2 ,

1
τ

}
,

0 < a ≤ αk,i ≤ min
{

1−βi
2 : i ∈ I

}
,

0 < ā ≤ ρk,j ≤ b̄ < min
{

1
2c1j

, 1
2c2j

: j ∈ J
}
,

ϵk ≤ γk,
∑∞

k=0 ϵ
2
k < +∞,∑∞

k=0 γk = +∞,
∑∞

k=0 γ
2
k < +∞,

∑∞
k=0 γkτk < +∞.

(2.8)

Step 2. Compute

yki = (1− αk,i)x
k + αk,iSi(x

k), ∀i ∈ I,

yk := yki0, withi0 ∈ argmax{∥yki − xk∥ : i ∈ I},

zkj = argmin
{
ρk,jgj(y

k, y) + 1
2∥y − yk∥2 : y ∈ C

}
,

z̄kj = argmin
{
ρk,jgj(z

k
j , y) +

1
2∥y − yk∥2 : y ∈ C

}
,

zk := z̄kj0, with j0 ∈ argmax{∥z̄kj − yk∥ : j ∈ J},

xk+1 ∈ PrϵkC (z
k − γku

k), uk ∈ ∂τk
2 f(zk, zk).

(2.9)

Step 3. Take k := k + 1 and return to Step 1.

Now we will discuss the iteration scheme and the convergence of

the parallel projection method with computing inexact subgradients

and approximate metric projections. Consider this Lemmas.

Lemma 2.6. Let C be a nonempty closed convex subset of a real

Hilbert space H. Let g : C × C → R be a bifunction such that

g(x, x) = 0 for all x ∈ C, and for each x ∈ C, g(x, y) is lower semi-

continuous, convex and subdifferentiable on C respect to y. For each

ϵ ≥ 0, if g is β-strongly monotone on C and ∂ϵ
2g(x, x) is Lipschitz

continuous with constant L > 0 on C, then the multivalued mapping

S(x) := {x− γwx : wx ∈ ∂ϵ
2g(x, x)} , ∀x ∈ C,

is 2
√
γϵ−contractive with constant δ =

√
1− γ(2β − γL2), where

γ ∈
(
0, 2βL2

)
.

12



Lemma 2.7. Let C be a nonempty closed convex subset of a real

Hilbert space H, and a bifunction h : C × C → R ∪ {+∞} satisfy

the conditions:

� h(x, x) = 0 for all x ∈ C;

� for each x ∈ C, h(x, ·) is convex and subdifferentable on C;

� h is pseudomonotone on C;

� h is Lipschitz-type with constants γ1 > 0 and γ2 > 0.

Then, if λ ∈
(
0,min

{
1
2γ1

, 1
2γ2

})
, then the mapping S is defined in,

for each x ∈ C,

yx = argmin

{
λh(x, y) +

1

2
∥y − x∥2 : y ∈ C

}
,

S(x) = argmin

{
λh(yx, y) +

1

2
∥y − x∥2 : y ∈ C

}
,

which is quasinonexpansive on C.

Now we will discuss the iteration scheme and the convergence of

the parallel projection method with computing inexact subgradients

and approximate metric projections.

Theorem 2.3. Let f be β−strongly monotone and weakly continu-

ous, ∂ϵ
2f(x, x) be L− Lipschitz continuous on C. For each i ∈ I, let

the mapping Si : C → C be βi−demicontractive such that Ω ̸= ∅. Let
gj(j ∈ J) be pseudomonotone, weakly continuous and Lipschitz-type

with constants c1j and c2j. Then, the sequences {xk}, {yk} and {zk}
converge strongly to a unique solution x∗ of Problem (2.1).

In this section, we suppose that f, Si(i ∈ I) and g : C × C →
R∪ {+∞} satisfy the following assumptions:

(1) The bifunction f is β−strongly monotone. weakly continuous

and ∂ϵ
2f(x, x) is Lipschitz continuous on C with constant L > 0

for all ϵ > 0;

13



(2) The mappings {Si : i ∈ I} are βi−demicontractive;

(3) The bifunction g is pseudomonotone, weakly continuous, Lipschitz-

type with constants c1 > 0 and c2 > 0, g(x, x) = 0 for all x ∈ C.

When Si(i ∈ I) is the identity mapping and gj = g(j ∈ J), we

give the following application of Theorem 2.3.

Corollary 2.1. Let positive paramerter sequences {ρk}, {ϵk}, {γk}
and {τk} satisfy the restriction set:

τ ∈ (0, β), 0 < τk ≤ γk < min
{

2β
L2 ,

2(β−τ)
L2−τ2 ,

1
τ

}
,

0 < ā ≤ ρk ≤ b̄ < min
{

1
2c1

, 1
2c2

}
,

ϵk ≤ γk,
∑∞

k=0 ϵ
2
k < +∞,∑∞

k=0 γk = +∞,
∑∞

k=0 γ
2
k < +∞,

∑∞
k=0 γkτk < +∞.

Then, the sequences {xk} and {yk} are defined by the iteration scheme:
x0 ∈ C,

yk = argmin
{
ρkg(x

k, y) + 1
2∥y − xk∥2 : y ∈ C

}
,

zk = argmin
{
ρkg(y

k, y) + 1
2∥y − xk∥2 : y ∈ C

}
,

xk+1 ∈ PrϵkC (z
k − γku

k), uk ∈ ∂τk
2 f(zk, zk),

(2.10)

which converge strongly to a unique solution of the bilevel equilibrium

problem (2.7).

In the case gj = 0(j ∈ J), Problem (2.1) is formulated in the

equilibrium problem over the fixed point set of the demicontractive

mappings Si(i ∈ I). By Theorem 2.3, the iteration scheme for solv-

ing Problem (2.7) and its convergence are given as the following

results.

Corollary 2.2. Suppose that the sequences {xk} and {zk} generated

14



by the scheme:
x0 ∈ C,

yki = (1− αk,i)x
k + αk,iSi(x

k), ∀i ∈ I,

yk := yki0, where i0 ∈ argmax{∥yki − xk∥ : i ∈ I},

xk+1 ∈ PrϵkC (y
k − γku

k), uk ∈ ∂τk
2 f(yk, yk).

(2.11)

Choosing positive paramerter sequences {αk,i}(i ∈ I), {ϵk}, {γk} and

{τk} satisfies the conditions:

τ ∈ (0, β), 0 < τk ≤ γk < min
{

2β
L2 ,

2(β−τ)
L2−τ2 ,

1
τ

}
,

0 < a ≤ αk,i ≤ min
{

1−βi
2 : i ∈ I

}
,

ϵk ≤ γk,
∑∞

k=0 ϵ
2
k < +∞,∑∞

k=0 γk = +∞,
∑∞

k=0 γ
2
k < +∞,

∑∞
k=0 γkτk < +∞.

Then, the sequences {xk} and {yk} converge strongly to a unique

solution x∗ of Problem (2.7).

2.4.2 Numerical illustration

In this section, we present some numerical calculations illustrating

the calculation steps of the Algorithms. The calculations are perform

in MATLAB R2014a on PC Intel(R) Core(TM) i5-7360U CPU @

2.30GHz 8.00GB Ram. We also compare the convergence of the

sequences generated by the proposed calculation scheme (2.11) with

the subgradient type method given by Iiduka H., Yamada I. (2009)

(algorithm 3.2), Scheme (2.3) and the approximate and contactive

algorithm in Hai, T.N. (2017) (algorithm 4.1), Scheme (2.10) and

Proximal subgradient of Anh P.N. (2017) (algorithm 2).
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Chapter 3

Inertial subgradient methods

In this chapter, we introduce new iterative algorithms to solve

the equilibrium problem where the constrained sets are given as the

intersection of the fixed point sets of demicontractive mappings in a

real Hilbert space.

The first algorithm uses a new technique, the hybrid reduction

method, the subgradient technique to solve the equilibrium prob-

lem EQ(Ω, f) with the assumption that the bifunction f is strongly

monotonone and type Lipschitz continuous on H. The second algo-

rithm is based on inertial extrapolation, parallel and auxiliary prin-

ciple techniques. The strong convergence of the iterative sequence

generated by the algorithms is proven in Theorems 3.1 and Theorem

3.2 with appropriate parameters.

3.1 Inertial subgradient methods

3.1.1 Algorithm and the convergences

For solving the equilibrium problems over the fixed point set the

EPF(Ω, f), we assume the bifunction f and the mappings Sk(k ∈ I),

parameters satisfy the following conditions:

(A1) The f is β-strongly monotone, the subdifferential ∂2f(x, x) is

compact and L-Lipschitz continuous;

16



(A2) For each k ∈ I, Sk is ξk−demicontractive and satisfies the con-

dition (Z), Ω :=
⋂

k∈I Fix(Sk) ̸= ∅;

(A3) For every k ≥ 0, positive parameters βk, γk, τk, λk and {µk}
satisfy the following restrictions:

0 < c1 ≤ βk ≤ c2 < 1, µk ≤ η,

αk ∈ (0, 1− ξk], infk αk > 0,

0 < γk < 1, lim
k→∞

γk = 0,
∑∞

k=1 γk = ∞,

lim
k→∞

τk
γk

= 0, λk ∈
(

β
L2 ,

2β
L2

)
, a ∈ (0, 1),

√
1− 2λkβ + λ2

kL
2 < 1− a.

(3.1)

Algorithm 3.1. (Inertial hybrid subgradient algorithm)

Initialization: Take x0, x1 ∈ H arbitrarily.

Iterative steps: k = 1, 2, . . .

Step 1. Compute an inertial parameter

θk =

 min

{
µk,

τk
∥xk − xk−1∥

}
if ∥xk − xk−1∥ ≠ 0,

µk otherwise.
(3.2)

Step 2. Compute

wk = xk + θk(x
k − xk−1) (inertial technique),

S̄kw
k = (1− αk)w

k + αkSkw
k,

yk ∈ ∂2f(w
k, wk) (compute subradient),

zk = (1− γk)S̄kw
k + γk

[
wk − λky

k
]
,

S̄kz
k = (1− αk)z

k + αkSkz
k,

xk+1 = (1− βk)S̄kw
k + βkS̄kz

k.

(3.3)

Step 3. Set k := k + 1 and return to Step 1.

Lemma 3.1. Let {sk} be a sequence of nonnegative real numbers

and {pk} a sequence of real numbers. Let {αk} be a sequence of real

numbers in (0, 1) such that
∑∞

k=1 αk = ∞. Assume that

sk+1 ≤ (1− αk)sk + αkpk, k ∈ N .

17



If lim supi→∞ pki ≤ 0 for every subsequence {ski} of {sk} satisfying

lim inf
i→∞

(ski+1 − ski) ≥ 0,

then limk→∞ sk = 0.

A strong convergence result is established by the following theorem.

Theorem 3.1. Assume that the assumptions (A1)− (A3) are satis-

fied. Then, the sequence {xk} generated by the algorithm 3.1 con-

verges strongly to a unique solution x∗ of the problem EQ(Ω, f).

3.1.2 Numerical illustration

In this section, we will perform some calculations illustrating the

strong convergence of the sequences generated by the algorithm. We

also compare the proposed algorithm with the parallel projection

method (PPA) (Anh .P.N., 2022), Algorithm 3.1, Algorithm 4.1.

3.2 Parallel inertial auxiliary principle technique

3.2.1 Algorithm and the convergence

We assume that:

(A1) The mapping f : H × H → R is β−strongly monotone and

Lipschitz continuous with positive constants c1, c2 such that β >

c1.

(A2) For all i ∈ I the mappings Si : H → H are βi−demicontractive

and demiclosed at zero and the set Ω := ∩i∈IFix(Si) is nonempty.

The parameters setup for the algorithm is as follows.
τ ∈ (0, β − c1), {λk} ⊂ [ā, â] ⊂ (0, 1), λ2

k +
τ−4(β−c1)
2τ2(β−c1)

λk +
β−c1−τ
τ2(β−c1)

≥ 0,

ζk ∈ (0, 1
τ ā),

∞∑
k=1

ζk = +∞, τk > 0,
∞∑
k=1

τk < +∞,

µk > 0, γk,i ∈ (b̄, b̂) ⊂ (0, 1−max{βi : i ∈ I}), ∀i ∈ I.

(3.4)
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Algorithm 3.2. Choose starting points x0, x1 ∈ H.

Step 1. (Inertial technique) Given the iterates xk−1 and xk, compute

wk = xk + αk(x
k − xk−1), (3.5)

where

αk =

min
{

τk
∥xk−xk−1∥, µk

}
, if ∥xk − xk−1∥ ≠ 0,

µk otherwise.
(3.6)

Step 2. (Parallel technique) Take

uki = (1− γk,i)w
k + γk,iSi(w

k).

Set tk := uki0, where i0 ∈ argmax{∥uki − wk∥ : i ∈ I}.

Step 3. (Auxiliary problem principle) Compute

yk = argmin

{
λkf(t

k, x) +
1

2
∥x− tk∥2 : x ∈ C

}
,

xk+1 = (1− ζk)t
k + ζky

k. Let k := k + 1 and go to Step 1.

Note that, computing wk is used by inertial technique and tk is

by parallel technique. Then, the iteration point xk+1 is based on

the Mann iteration method and the auxiliary problem principle. We

recall that a point xk generated by Algorithm 3.2 is an ϵ−solution

of the problem EQ(Ω, f), if ∥xk+1 − xk∥ ≤ ϵ.

For the convergence of the algorithm we assume the following

Lemma.

Lemma 3.2. Let {ak} is positive and the sequence {pk}. Take a real

sequence {αk} in (0, 1) such that
∞∑
k=1

αk = ∞. Assume

ak+1 ≤ (1− αk)ak + bk, k = 1, 2, · · · .

Then, if lim sup
k→∞

bk
αk

≤ 0 or
∞∑
k=1

bk < +∞, then lim
k→∞

ak = 0.

Theorem 3.2. Assume that Assumptions (A1) and (A2) hold. Un-

der conditions (3.4), the sequence {xk} generated by Algorithm 3.2

strongly converges to a unique solution x∗ of the problem EQ(Ω, f).
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3.2.2 Numerical illustration

In this section, we will do some numerical calculations. The pro-

posed algorithm (PIAPA) will be compared with the Parallel Pro-

jection Algorithm (PPA) (CT1., Scheme 3.1) and subgradient type

algorithm (STA) by Iiduka H. (2003) (Algorithm 3.2).
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Conclusions

1. 1. Research results:

In this thesis, we have built a number of algorithms to solve

the equilibrium problems over the fixed point sets. The thesis has

achieved the following results.

� Proposing two new algorithms to solve the equilibrium problem

over a fixed point set in a real Hilbert space H.This result is

published in [CT1.], List of published works of the author.

� Proposing a new projection method to solve equilibrium prob-

lems defined over the intersection of fixed point sets and the so-

lution of the equilibrium problem. The convergence of repeating

sequences generated by the algorithm is proven Theorem 2.3.

This result is published in [CT4.], List of published works of

the author.

� Proposing two algorithms to solve the equilibrium problems

over the intersection of fixed point sets of demicontractive map-

pings in Hilbert space. Under the assumption that the bifunc-

tion f is strongly monotone and Lipschitz type continuous on

H, the sequences generated by the two algorithms all converge

strongly to the solution of the problem. This result is published

in [CT2., CT3.], List of published works of the author.

� Performing Several numerical experiments in finite and infinite

dimensional spaces with comparisons to related results to illus-

trate the algorithm performances and emphasize its computa-

tional and convergence advantages.
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2. Recommendations for further studies: Future research

that can extend our current study:

� Research new algorithms for solving bilevel equilibrium prob-

lems in particular and general;

� Evaluate the error and convergence speed of the algorithms pro-

posed in the thesis;

� Apply proposed algorithms to practical models and calculate

algorithm complexity.
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